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Abstract
The usual Prelle–Singer (PS) approach misses many first-order ordinary
differential equations presenting Liouvillian functions in the solution
(LFOODEs). We point out why and propose a method extending the PS
method to solve a class of these previously unsolved LFOODEs. Although our
method does not cover all the LFOODEs, it maintains the semi-decision nature
of the usual PS method.

PACS numbers: 02.30.Hq, 02.20.−a, 02.60.Gf

1. Introduction

The problem of solving ordinary differential equations (ODEs) has led, over the years, to a
wide range of different methods for their solution. Along with many techniques for calculating
tricky integrals, these often occupy a large part of the mathematics syllabuses of university
courses in applied mathematics round the world.

The overwhelming majority of these methods are based on the classification of the DE
into types for which a method of solution is known, which has resulted in a gamut of methods
that deal with specific classes of DEs. This scene changed somewhat at the end of the 19th
century when Sophus Lie developed a general method to solve (or at least reduce the order
of ) ordinary differential equations given their symmetry transformations [1–3]. Lie’s method
is very powerful and highly general, but first requires that we find the symmetries of the
differential equation, which may not be easy to do. Search methods have been developed
[4, 5] to extract the symmetries of a given ODE, however these methods are heuristic and
cannot guarantee that, if symmetries exist, they will be found.

A big step forward in constructing an algorithm for solving first-order ODEs (FOODEs)
analytically was taken in a seminal paper by Prelle and Singer (PS) [6] on autonomous systems

0305-4470/02/173899+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK 3899

http://stacks.iop.org/ja/35/3899


3900 L G S Duarte et al

of ODEs. Prelle and Singer’s problem is equivalent to asking when a FOODE of the form
dy/dx = M(x, y)/N(x, y), with M and N polynomials in their arguments, has an elementary
solution4 (roughly speaking, a solution which can be written in terms of a combination of
polynomials, logarithms, exponentials and radicals). The great advantage of the PS approach
is the fact that, up to a certain degree (see section 2), the method ensures that, if it exists, the
elementary solution will be found. Prelle and Singer were not exactly able to construct an
algorithm for solving their problem, since they were not able to define the degree bound for the
polynomials which might enter into the construction of an integrating factor for the FOODE
in question. Though this is important from a theoretical point of view, any practical use of
the PS method will have a degree bound imposed by the time necessary to perform the actual
calculation needed to handle the evermore complex equations. With this in mind it is possible
to say that Prelle and Singer’s original method is almost an algorithm, awaiting a theoretical
degree bound to turn it algorithmic. Due to its semi-decision nature, the PS approach has
motivated many extensions [7–10].

The PS approach is valid for solving first-order differential equations with elementary
solutions. Despite this fact, as we will show in this paper, the PS approach solves some
first-order differential equations whose solutions are not elementary (i.e., cannot be written in
terms of elementary functions). These solutions are written in terms of Liouvillian functions5

(a generalization of the elementary functions). The purpose of this paper is twofold: first,
using previous results due to Prelle and Singer [6, 11], we take another step in the knowledge
of the integrating factor structure for LFOODEs, thus understanding why some LFOODEs
(with non-elementary solutions) can be solved via the PS approach while others cannot be;
then, using this knowledge, we construct a method allowing for the solution of a class of those
LFOODEs which are missed by the usual PS approach.

The paper is organized as follows: in section 2, we present a short theoretical introduction
to the PS approach; in the following section, we show why the Prelle–Singer approach solves
some LFOODEs (with non-elementary solutions) and misses others; in section 4, we present
a new result concerning the integrating factor structure for LFOODEs; in section 5, we
introduce the main ideas of our method with examples of its application; we finally present
our conclusions.

2. The Prelle–Singer procedure

Despite its usefulness in solving FOODEs, the Prelle–Singer procedure is not very well
known outside mathematical circles, and so we present a brief overview of the main ideas of
the procedure.

Consider the class of FOODEs which can be written as
dy

dx
= M(x, y)

N(x, y)
(1)

whereM(x, y) andN(x, y) are polynomials with coefficients in the complex field C. Rewriting
(1) as a Pfaffian equation, one gets

M(x, y) dx −N(x, y) dy = 0. (2)

Suppose there is a function R(x, y) such that

R(M dx −Ndy) = RM dx − RN dy = dβ (3)
4 For a formal definition of elementary function, see [13].
5 Roughly speaking, Liouvillian functions are built up from rational functions using exponentiation, integration and
algebraic functions. For a formal definition see [13].



Method to tackle first-order ordinary differential equations 3901

i.e., the 1-form (RM) dx − (RN) dy is exact. The function R is then called an integrating
factor6 for (1).

From (3) we can conclude that ∂x(RN) + ∂y(RM) = 0, leading to N∂xR + R∂yN +
M∂yR + R∂yM = 0. Thus, we finally obtain

D[R]

R
= −(∂xN + ∂yM) (4)

where D ≡ N∂x +M∂y.

In [6], Prelle and Singer proved that, if the solution of (1) is written in terms of elementary
functions, then, for this FOODE, there exists an integrating factor of the form R = ∏

i f
ni
i

where fi are irreducible polynomials and ni are nonzero rational numbers. Using this result
in (4), we have

D[R]

R
= D

[∏
i f

ni
i

]
∏

i f
nk
k

=
∑

i f
ni−1
i niD[fi ]

∏
j �=i f

nj
j∏

k f
nk
k

=
∑
i

f
ni−1
i niD[fi ]

f
ni
i

=
∑
i

niD[fi ]

fi
. (5)

From (4), plus the fact that M and N are polynomials, they concluded that D[R]/R is a
polynomial and that fi | D[fi ]7 [6].

We now have a criterion for choosing the possible fi (build all the possible divisors (up
to a certain degree) of D[fi ]) and, using (4) and (5), we have

∑
i

niD[fi]

fi
= −(∂xN + ∂yM). (6)

If we manage to solve (6) and thereby find ni , we know the integrating factor for the
FOODE and the problem is reduced to a quadrature.

3. The PS method and LFOODEs

In this section, we will comment on the effectiveness of the PS approach to LFOODEs. The
Prelle–Singer result [6], as already mentioned, assures that if there exists a solution written in
terms of elementary functions to a given FOODE, then the corresponding integrating factor
can be written as:R = ∏

i f
ni
i where fi are irreducible polynomials andni are nonzero rational

numbers. One might then ask whether there are cases where the solution is non-elementary
and yet one can find an integrating factor of the form just described. As we shall see shortly,
through the simple illustrative example below, it is actually the case.

Consider:

dy

dx
= 3y2x2 − y2 + 4

4xy(x + 1)(x − 1)
. (7)

For this FOODE, we have

M = 3x2y2 − y2 + 4 N = 4xy(x + 1)(x − 1) (8)

and so

D = (3x2y2 − y2 + 4)∂x + 4xy(x + 1)(x − 1)∂y. (9)

6 For FOODEs such as (1), where M and N are infinitely differentiable functions, there always exist such functions.
7 In other words, fi is a factor of D[fi ].
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In order to follow the PS approach we look for all possible irreducible polynomials
fi such that D[fi]/fi is a polynomial. Up to polynomials of degree 1, we find for this
case:f1 = x, f2 = x + 1 and f3 = 1 − x. Solving (6), we get: n1 = n2 = n3 = −3/2. So, we
have an integrating factor for (7) given by

R =
∏
i

f
ni
i = x−3/2(x + 1)−3/2(1 − x)−3/2 (10)

and the corresponding solution is∫
3y2x2 − y2 + 4

x3/2(x + 1)3/2(1 − x)3/2
dx −−C1 = 0. (11)

The above integral can be expressed in terms of elliptic functions (which are non-elementary).
As previously stated, the PS approach assures that, if the solution is expressible in terms

of elementary functions, there will be an integrating factor of the form
∏

i f
ni
i . However, it is

important to emphasize, the PS result does not say that, if the integrating factor is of the form∏
i f

ni
i , the solution will be elementary! The above FOODE is an example of that.
Let us now analyse another FOODE presenting a Liouvillian solution that is non-

elementary. In this case, the application of the PS approach is not successful and we will
show below why that had to be so. The FOODE is

dy

dx
= y2 + yx + x − 1 (12)

equation I.18 of the standard testing ground for ODE solvers by Kamke [12].
The solution for this FOODE is∫

ex
2/2−2x(y2 + xy + x − 1)

(y + 1)2
dx. (13)

The above integral can be expressed in terms of the error function (which is non-elementary).
Let us have a look at the integrating factor for this FOODE to understand why the PS approach
fails for this case

R = ex
2/2−2x

(y + 1)2
. (14)

Since the standard PS procedure constructs integrating factor candidates from polynomials
in the variables (x, y), one can see that, since the integrating factor on (14) presents the
exponential ex

2/2−2x , it will never be found by the PS method.
In this section, we have pointed out that the FOODEs that present non-elementary

Liouvillian solutions can be broadly divided into two groups; those presenting integrating
factors of the form

∏
i f

ni
i (in which cases the PS method will be successful) and those with

integrating factors that cannot be put on the general form just presented. In the next section,
we will start from a result due to Singer [11] and demonstrate a theorem concerning the general
structure of the integrating factor for LFOODEs.

4. Concerning the general structure of the integrating factor for LFOODEs

In this section, we are going to present a result concerning the general form for the integrating
factor for FOODEs with Liouvillian solutions (LFOODEs). We are going to start our analysis
from the following result (due to Singer [11]):

Singer’s result. If we have a LFOODE of the form dy/dx = M(x, y)/N(x, y), where M and
N are polynomials in (x, y), then it presents an integrating factor of the form e(

∫
(U dx+V dy)),
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where U and V are rational functions of (x, y) with Uy = Vx so that this latter line integral
is well defined8.

From this, we extracted the following theorem:

Theorem. If a LFOODE is of the form dy/dx = M(x, y)/N(x, y), where M and N are
polynomials in (x, y), then it presents an integrating factor that can be put in the form:

R = er0(x,y)

n∏
i=1

pi(x, y)
ci (15)

where r0 is a rational function of (x, y), the pi are irreducible polynomials in (x, y) and the
ci are constants.

To prove this theorem we need the following lemma.

Lemma. If ω is a function of (x, y) such that both partial derivatives (ωx, ωy) are rational
functions of (x, y), then ω can be written as

ω = r0 +
∑
i

αi ln(ri) (16)

where the ri are rational functions of (x, y) (including i = 0), and αi are constants.

Proof of the lemma. Let us write ω in the following form9:

ω = f (x) + g(y) + h(x, y) (17)

where f is a function of x only, g is a function of y only and h is such that
∫
hx dx =∫

hy dy = h. So, we have that

ωx = hx +
df

dx
(18)

ωy = hy +
dg

dy
(19)

∫
ωx dx =

∫
hx dx +

∫
df

dx
dx = h + f (20)

∫
ωy dy =

∫
hy dy +

∫
dg

dy
dy = h + g (21)

From well-known results concerning formal integration [13], we have that if ρ(u) is a
rational function of u, then∫

ρ(u) du = ρ0(u) +
∑
i

κi ln(ρi(u)) (22)

where ρi (i = 0, . . .) are rational functions of u, and κi(i = 1, . . .) are constants.
Therefore, if we have a functionF(u) such that its derivative (dF/du) is a rational function

of u, then F(u) can be written as∫
dF

du
du = F = F0 +

∑
i

Ci ln(Fi) (23)

where the Fi are rational functions of u (including i = 0), and Ci are constants.
8 From now on, Fu will mean ∂uF .
9 Any analytical function can be written in this form. As will become clear soon, this is convenient for our
demonstration.



3904 L G S Duarte et al

Now suppose that the hypotheses of the lemma are satisfied. Then, since ωx is a rational
function of (x, y), then (see (18)) hx is a rational function of (x, y) and df/dx is a rational
function of x. Then, from (23), we have∫

hx dx = h = h0(x, y) +
∑
i

ci(y) ln(hi(x, y)) (24)

where hi are functions of (x, y), rational in x, and ci do not depend on x, and∫
df

dx
dx = f = f0(x) +

∑
j

aj ln(fj (x)) (25)

where fj are rational functions of x only, and aj are constants.
From the results in [13], in principle, hi and ci could be algebraic functions10 of y.

However,ωy is a rational function of (x, y) and implies (see (19)) that hy is a rational function
of (x, y) and dg/dy is a rational function of y only. So, differentiating (24) with respect to y,
we get

hy = h0y +
∑
i

ci
hiy

hi
+

∑
i

dci
dy

ln(hi). (26)

Since hy is a rational function of (x, y), the logarithmic terms must vanish, leading to (since
they cannot cancel out) dci/dy = 0 → ci are constants. With that in mind, integrating (26)
with respect to y we have∫

hy dy = h = h0(x, y) +
∑
i

ci ln(hi(x, y)) (27)

where ci are constants. From (23), we conclude that hi must be rational functions of y rather
then algebraic. So, the hi (i = 0, 1, . . .) are rational functions of (x, y).

Since dg/dy is a rational function of y, we have∫
dg

dy
dy = g = g0(y) +

∑
k

bk ln(gk(y)) (28)

where bk are constants and gk are rational functions of y.
Finally, since ω = f (x) + g(y) + h(x, y) we may conclude that ω can be written as in

(16) as we wanted to demonstrate. �

Using Singer’s results mentioned above and the lemma we have just demonstrated, we
can prove the theorem.

Proof of the theorem. Consider that the hypotheses in Singer’s result are satisfied. Since
Uy = Vx , we can choose a function ω(x, y) such that dω = U dx + V dy, i.e., ωx = U and
ωy = V . So, using Singer’s result, it is straightforward to see that

R = e
∫
(U dx+V dy) = e

∫
dω = eω. (29)

Note that, from the hypotheses in Singer’s result, ωx = U and ωy = V are rational functions
of (x, y). So, using the lemma above, we can write

R = eω = e
r0+

∑
i

αi ln(ri ) = er0
∏
i

(ri)
αi (30)

10 For a formal definition of algebraic functions, see [13].
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where the ri are rational functions of (x, y) (including i = 0), and αi are constants. Since the
ri are rational, we can write

∏
i(ri)

αi as a product of powers of irreducible polynomials. So,
we can finally write

R = er0

n∏
i=1

p
βi
i (31)

where r0 is a rational function of (x, y), the pi are irreducible polynomials in (x, y) and the
βi are constants, thus completing the proof. �

Note that, if r0 is constant (r0 = k), we have from (31) that R = ek
∏n

i=1 p
βi
i =

K
∏n

i=1 p
βi
i implying that

∏n
i=1 p

βi
i is also an integrating factor, which is equivalent to the

general expression used in the PS method (see section (2)). Therefore, our result for the
general structure for the integrating factor extends our knowledge of the general structure for
the integrating factor for FOODEs with Liouvillian solutions. In what follows, based on this
result, we are going to present a method to find R for a class of FOODEs where r0 is not a
constant and so the PS method is not applicable.

5. Finding the integrating factor

In this section, using the result just presented above (31) and making a conjecture, we are
going to present a method of finding the integrating factor for a class of LFOODEs using a
procedure that extends the PS method. We then present some examples of its applicability.

5.1. Introduction

By using R as given on (31) and (4), one finds

D[r0(x, y)] +
∑
i

ciD[pi]

pi
= −(∂xN + ∂yM). (32)

In the PS method, the analogous to the above equation is (6):

∑
i

niD[fi]

fi
= −(∂xN + ∂yM).

Note that the main difference among these equations is the presence of the ‘extra’ term
D[r0] on (32). For (6), using the fact that M and N are polynomials in (x, y), one can prove
that fi are eigenpolynomials of the operator D, i.e., D[fi ]/fi is a polynomial [6]. Regarding
(32), if D[r0] is a polynomial, by the same line of reasoning, one can conclude that pi are
eigenpolynomials of the operator D, i.e., D[pi]/pi is a polynomial. In the following, we will
show that, if D[r0] is a polynomial, we are able to build a method to tackle a class of FOODEs
where the PS method is not applicable. So, we are going to make the following conjecture.

Conjecture. If R = er0
∏n

i=1 p
ci
i , where r0 is a rational function of (x, y), the pi are

irreducible polynomials in (x, y) and the ci are constants, is an integrating factor for a
LFOODE of the form dy/dx = M(x, y)/N(x, y), where M and N are polynomials in (x, y),
then D ≡ N∂xr0 +M∂yr0 is a polynomial.

Let us now introduce the method.
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5.2. The method

The method we are now going to introduce enables us to successfully deal with the cases where
r0(x, y) = r(x) + s(y), where both r and s are rational functions. As we have previously
mentioned, for this case the PS method has no hope of finding the integrating factor (and
consequently integrate the FOODE).

The LFOODEs that correspond to the above condition define the class of equations solved
by our method.

The first step of our method is that, since we made a hypothesis implying that the pi are
eigenpolynomials of the D operator, we have: D[pi] = gipi , where gi are polynomials called
eigenvalues of D. We can then calculate all the pi and associated gi up to a given degree, in
the same fashion as the PS method, for the LFOODE that we want to solve. We then use the
knowledge of this set of pi and gi in the next steps of the method.

Since in this section we are interested in presenting the most effective method possible
for solving FOODEs, we will actually divide the next steps of our method into three subcases:

1. Looking for r0 of the type r0 = r0(x)

2. Looking for r0 of the type r0 = r0(y)

3. Looking for r0 of the type r0 = r(x) + s(y)11

where all of the above functions are rational. Why would we do so? The point is that, as
we shall make clear below, the tackling of the ‘full’ case r0(x, y) = r(x) + s(y) is much
more involved than the tackling of the ‘partial’ cases (r0(x, y) = r(x)), r0(x, y) = s(y)). So,
since when tackling a FOODE we do not know a priori what is the integrating factor (otherwise
we would have solved the problem already), we could be facing a FOODE for which the
corresponding integrating factor has r(x) �= 0 and s(y) = 0 or r(x) = 0 and s(y) �= 0 and
so it is worth (for reasons of time consumption) pursuing first the partial cases just described
(items 1 and 2), before trying the ‘full’ case (item 3).

Bearing that in mind, we are going now to present the next steps of the method. These
steps depend on the subcases (items 1, 2 or 3) which we are pursuing. As in the case
of the PS method, our method is of a semi-decision nature (see section 1), i.e. there is an
uncertainty concerning the degree of the polynomials involved. So, in principle, one could be
doing calculations ad infinitum in each of the three subcases (see below). The decision about
whether to keep on doing calculations within the same subcase or trying the next one is an
open matter. Let us now introduce the next steps of our method for each of the three subcases:

5.2.1. Subcase r0 = r0(x). Reminding the reader that the D operator is defined by
D ≡ N∂x +M∂y , (32) will then become

N
dr0(x)

dx
+

∑
i

ciD[pi]

pi
= −

(
∂N

∂x
+
∂M

∂y

)
. (33)

We can then write (33) as

N
dr0(x)

dx
= −

(
∂N

∂x
+
∂M

∂y

)
−

∑
i

cigi (34)

leading to

dr0(x)

dx
= −Nx +My +

∑
i cigi

N
. (35)

11 Full case, much more involved than the first two partial ones.
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In order to find r0(x) we need first to integrate (35):

r0(x) = −
∫
Nx + My +

∑
i cigi

N
dx. (36)

Since r0 is a rational function of x only, we can determine the ci by imposing that
the derivative of the right-hand side of (36) with respect to y be equal to zero and that the
logarithmic terms that might arise from the integration vanish. If we manage to find a set of
ci satisfying these conditions, up to the degree we are considering, we will have found the
integrating factor for the LFOODE. Otherwise, we then increase the degree of the pi and try
again, until we succeed, in the same manner as in the PS method. See an example of this
subcase in section 5.3.1.

5.2.2. Subcase r0 = r0(y). Analogously, for this case, (32) will become

M
dr0(y)

dy
+

∑
i

ciD[pi]

pi
= −

(
∂N

∂x
+
∂M

∂y

)
. (37)

Following a procedure similar to the one used in section 5.3.1, we can write r0(y) as

r0(y) = −
∫
Nx + My +

∑
i cigi

M
dy. (38)

Since r0 is a rational function of y only, we can determine the ci by imposing that
the derivative of the right-hand side of (38) with respect to x be equal to zero and that
the logarithmic terms that might arise from the integration vanish. In the same way, if we
manage to find a set of ci satisfying these conditions, up to the degree we are considering,
we will have found the integrating factor for the LFOODE. Otherwise, we then increase the
degree of the pi and try again, until we succeed, in the same manner as in the PS method. See
an example of this subcase in section 5.3.2.

5.2.3. Subcase r0 = r(x) + s(y). For this case, (32) becomes

N
dr(x)

dx
+M

ds(y)

dy
+

∑
i

ciD[pi]

pi
= −

(
∂N

∂x
+
∂M

∂y

)
. (39)

Dividing the equation above by N and isolating dr(x)
dx , one obtains

dr(x)

dx
= −M

N

ds(y)

dy
− Nx +My +

∑
i cigi

N
. (40)

Integrating both sides of the equation, with respect to x:

r(x) = −ds(y)

dy

∫
M

N
dx −

∫
Nx +My +

∑
i cigi

N
dx. (41)

We can then isolate ds(y)
dy in (41) to find

ds(y)

dy
=

∫
Nx +My +

∑
i cigi

N
dx − r(x)∫

M

N
dx

. (42)

An analogous procedure leads to

dr(x)

dx
=

∫
Nx +My +

∑
i cigi

M
dy − s(y)∫

N

M
dy

. (43)
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The ci remain to be determined. Once again, we still have to impose that, by construction,
r(x) and dr(x)/dx do not depend on y and, analogously, s(y) and ds(y)/dy do not depend
on x. By imposing this, and that both r(x) and s(y) (and consequently dr(x)/dx and ds(y)/dy)
are rational functions, we may hope to find a set of suitable values for ci . If that is the case,
we would have found r(x) and s(y) and, consequently, the integrating factor. If this fails, we
have to increase the degree of the pi and try all over again. See an example of this subcase in
section 5.3.3.

5.3. Examples

In this section, we are going to present one example of application of our method for each of
the subcases mentioned above.

5.3.1. r0 = r0(x). Consider the LFOODE (I.129 in [12]):

(x + 1)
dy

dx
+ y(y − x) = 0. (44)

For this equation, up to degree 1, we have that the eigenpolynomials (with the associated
eigenvalues) are

• p1 = y, g1 = (x − y)

• p2 = (x + 1), g2 = 1.

So, (36) becomes

r0(x) = ((2 + c1) y − c2 + c1) ln(x + 1)− x − c1x. (45)

Imposing that r0 is a rational function of x will lead to

c1 = −2 c2 = −2 (46)

and, consequently, to (using (31)):

r0(x) = x → R = ex

y2(x + 1)2
(47)

5.3.2. r0 = r0(y). Consider the LFOODE (I.235 in [12]):

(xy + a)
dy

dx
+ by = 0. (48)

For this equation, up to degree 1, we have that the eigenpolynomials (with the associated
eigenvalues) are

• p1 = y, g1 = −b.
So, (36) becomes

r0(y) = (−1 − c1) ln(y) +
y

b
(49)

Imposing that r0 is a rational function of y will lead to

c1 = −1 (50)

and, consequently, to (using (31)):

r0(y) = y

b
→ R = e

y

b

y
(51)
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5.3.3. r0 = r(x) + s(y). Consider the Abel LFOODE of the first kind:
dy

dx
= y2(y + x − 1)

x2
. (52)

For this equation, up to degree 1, we have that the eigenpolynomials (with the associated
eigenvalues) are

• p1 = x, g1 = x,

• p2 = y, g2 = y2 + yx − y,

• p3 = x + y, g3 = x − y + y2.

So, from (43) we get

dr(x)

dx
= −

(
(−c2 − 2) x2 + (2c3 + 2c2 + 6 + c1) x − c3 − c2 − 2

)
y ln(y)

x2 (x − 1 + ln(y)y − ln(y + x − 1)y)

−
(
(−c3 − 1) x2 − c1x − 1

)
y ln(y + x − 1)

x2(x − 1 + ln(y)y − ln(y + x − 1)y)

− (−x2 + 2x − 1)ys(y) + (c3 + 2 + c1) x
2 + (−c1 − c3 − 2) x

x2 (x − 1 + ln(y)y − ln(y + x − 1)y)
= 0 (53)

leading to(
−dr(x)

dx
x2y +

(
(−c3 − 1) x2 − c1x − 1

)
y

)
ln(y + x − 1) +

(
dr(x)

dx
x2y +

(
(−c2 − 2) x2

+ (2c3 + 2c2 + 6 + c1)x − c3 − c2 − 2
)
y

)
ln(y) + (x3 − x2)

dr(x)

dx

+ (−x2 + 2x − 1)ys(y) + (c3 + 2 + c1) x
2 + (−c1 − c3 − 2) x = 0. (54)

Since dr(x)/dx and s(y) are rational functions, in the above equation the coefficients of the
logarithmic terms must vanish. Therefore:

−dr(x)

dx
x2y +

(
(−c3 − 1) x2 − c1x − 1

)
y = 0 (55)

dr(x)

dx
x2y +

(
(−c2 − 2) x2 + (2c3 + 2c2 + 6 + c1) x − c3 − c2 − 2

)
y = 0. (56)

Solving (55) and (56) for dr(x)/dx and integrating in x, one gets

r(x) = −x − c3x + x−1 − c1 ln(x)) (57)

r(x) = (−2c3 − 2c2 − 6 − c1) ln(x) + c2x + 2x − 2x−1 − c2

x
− c3

x
. (58)

Imposing that the logarithmic terms vanish and that the right-hand sides of (57) and (58) are
equal, we get

{c1 = 0, c2 = −c3 − 3, c3 = c3} . (59)

Using these in (39), solving the resulting equation for ds(y)/dy and imposing that it cannot
depend on x, we have

(1 + c3)x
2 + ((2 + 2c3) y − 2 − 2c3) x + (1 + c3) y

2 + (−2 − 2c3) y + 1 + c3 = 0 (60)

implying that c3 = −1. So, using (59):

{c1 = 0, c2 = −2, c3 = −1} . (61)

Substituting (61) into (57), we get r(x) = 1/x. Using this in (54) and solving s(y), we have
finally (using (31)):

r(x) = 1

x
s(y) = 1

y
→ R = e

1
x

+ 1
y

y2(x + y)
. (62)
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6. Conclusion

In this paper, we have analysed why the PS method, which is designed to deal with the
first-order ordinary differential equations with elementary solutions, can solve some first-
order ordinary differential equations with non-elementary (Liouvillian) solutions. From that
analysis, we have shown that, for a LFOODE of the type given by (1), the integrating factor
can be written as

R = er0

n∏
i=1

p
βi
i (63)

where r0 is a rational function of (x, y), the pi are irreducible polynomials in (x, y) and the
βi are constants.

Based on that, we have presented a method which solves a class of LFOODEs out of the
scope of the PS method. Although our method deals with a restricted class of LFOODEs (of
type (1) and among those the ones defined by the three subcases considered in section 5.2),
we believe the method to be a valid contribution since, for example, it solves LFOODEs that
‘escape’ from powerful solvers12, using any method of solution (the example in section 5.3.3
is such a case). At the time of writing this paper, the conjecture we have herein used was not
proved. That now has been completed [14].

We hope to present results concerning the extension of our method to deal with a larger
class of LFOODEs in the near future. For example, considering r0(x, y) to be a general rational
function or LFOODEs with M(x, y) and/or N(x, y) not restricted to be polynomials, etc.
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